Extensive Test of Heavy-Machinery ECU on a NI VeriStand HiL using TestWeaver

Dr. Thomas Neubert, Hydrive Engineering GmbH
Dr. Mugur Tatar, QTronic GmbH
1 Introduction

2 Software Test Strategies

3 New Test Generation Strategy

4 Test Application

5 Summary
Software Complexity in Heavy Machinery

- single solutions - yesterday - integration of single systems - today - networking of data and functions to assistance systems - tomorrow -

- engine, transmission, hydraulic -
- damping systems -
- tracking systems -
- error detection, diagnosis -
- ground surface system -
- telemetric -
- virtual tow bar -
- teach-in-systems -
- workspace monitoring -
- anti-roll-over-system -
- fleet management -

Time

Complexity of software
14.09.1993: Accident of flight LH 2904, Airbus A320-211 in Warsaw after landing

Runway distance too short for overshooting or braking

Consequence: 2 dead persons, 54 injured persons

Source: http://de.wikipedia.org/wiki/Lufthansa-Flug_2904
Causes and Consequences of a Software Failures

- **Environmental Conditions**
 - Ground type (street, sand)
 - Street (dry, wet, ice)
 - Sand (soft, hard)
 - Summer / winter conditions

- **Driver - Use Cases**
 - Non-predictable use cases and applications
 - Non-logical operating sequences
 - Interaction with other systems

- **Systematic Failures**
 - Concept faults
 - Rounding faults, division by zero, data type conversions
 - Hardware faults
 - Tolerances
 - Aging

Faults happen...

Important: Find all faults in due time...

Test and validation must be done in a large space of situations
V-Model for Software Development
Manually written test scripts

Test #31
start_car();
shift_lever = D;
while (gear<2)
 accelPedal = 20;
if (time>2)
 error("no shift")
...

Problems
- High costs for development and maintenance of scripts
- Low coverage of tests
Idea
- Intelligent generation of ... 1000s of differing test scenarios
- Active attempt to:
 - maximize state coverage
 - drive the system in “difficult” situations

Benefit
- High coverage
- Low efforts for test specification

Testing = playing against (simulated) system
1 Introduction

2 Software Test Strategies

3 New Test Generation Strategy

4 Test Application

5 Summary
TestWeaver – Test Generation Strategy

1. Change sub-optimal scenarios to generate worst-cases
2. Drive the system in states that were not covered before

Reactive scenario generation: each scenario depends on history of generated scenarios. All cases can be reproduced.
TestWeaver – Test Generation Strategy

Th. Neubert / M. Tatar
1 Introduction
2 Software Test Strategies
3 New Test Generation Strategy
4 Test Application
5 Summary
Test Application - Excavator

- **Excavator Control Software**
 - developed and approved 5 years ago
 - undesirable error messages in field
 - not reproducible
 - high warranty costs
 - customers dissatisfied

Software should be driven into situations where undesirable errors will be detected.
HiL Test Bench

- Test bench frame
- ECU
- Signal conditioning
- Host PC
- Real-time PC
- RT Model control
Test Bench Architecture – Hand Coded Tests

Test Cases -> Test Automation
- manually created test cases -> Test Reports

Driver signals

.net API

Realtime Simulation
NI VeriStand

Realtime Machine Model
SIMULATION X

Signal Conditioning

Failure Insertion Unit

Sensor Signals

Valve Currents

ECU Control Software

Error codes reading and clearing
Results of Hand Coded Tests

- 1st step:
 - 50 manually created test cases
 - different load types (fixed, shuttling)
 - different load and load positions

- 2nd step:
 - more than 200 further test cases manually created
 - sensor tolerances

- Test effort: 3 month

No error reproduced.
Test Bench Architecture – Generated Tests

Test Space
- Coverage Goals
- Test Weave
- Automatic Generated Test Scenarios
- Test Reports

Test Reports
- Error codes reading and clearing
- Test Bench Architecture – Generated Tests
- Realtime Simulation
- ECU Control Software
- .net API

Realtime Simulation
- NI VeriStand

Realtime Machine Model
- Simulation X

Signal Conditioning
- Sensor Signals
- Valve Currents

Failure Insertion Unit
- Automatic Generated Test Scenarios
- .net connector API

NI VeriStand .net connector API

Pressure Relief Valve A
- Check Valve A
- Check Valve B
- Supply
- Tank 1
- Tank 2
- Engine

Th. Neubert / M. Tatar
14th ITI Symposium Dresden 30.11./1.12.2011
Results of Generated Tests

- Implementing of TestWeaver Set-up: 3 days
- test effort: 7 days
 - more than 2700 test scenarios automatically created
 - slope
 - load at bucket
 - attachment position
 - speed

After 2700 test scenarios error has been reproduced!
Summary

1. Introduction
2. Software Test Strategies
3. New Test Generation Strategy
4. Test Application
5. Summary
Summary

Hand Coded Software Tests
- Definition of test cases and quality criterias
- Verification of software functionality (functions, electrical faults, safety)
- Limited test coverage (100…1.000 test cases)
- High test effort

Generated Software Tests
- Definition of input space and not allowed system states
- Automatic generation of test scenarios
- Verification of software robustness
- High test coverage (10.000…100.000)
- Low test effort
THANK YOU FOR ATTENTION

www.qtronic.de www.hydrive-engineering.de